Async task with celery
A quick guide on how to use celery to accomplish async task in application.
How it works for celery-based async tasks
- Decorated function as celery task
- Broker (e.g. rabbitmq, redis, and etc.) to queue up the task
- Celery worker on the background to actually execute the task
Installation
# install a broker
$ sudo apt-get install redis-server [or rabbitmq-server]
$ sudo /etc/init.d/redis-server start
or $ sudo /etc/init.d/rabbitmq-server start
# install celery
$ sudo pip install celery
$ sudo pip install redis [if using redis as broker]
Define a task
# celery_tasks.py
from celery import Celery
celery_app = Celery('celery_tasks', broker='redis://localhost:6379/0')
@celery_app.task
def sum_to_one_million():
return sum(range(1000000))
Start worker
$ cd ~/workspace/celery_project
$ celery -A celery_tasks worker --loglevel=info
Invoke the task
- in interactive shell
>> from celery_tasks import sum_to_one_million >> print(sum_to_one_million())
- in a flask app
from flask import Flask
from celery_tasks import sum_to_one_million
app = Flask(__name__)
@app.route("/calcSync")
def calc_sum_sync():
return sum_to_one_million()
@app.route("/calcAsync")
def calc_sum_async():
sum_to_one_million.delay()
return "Calculation started in the background."
References
- First Steps with Celery
- Using Celery with Flask
- Celery Based Background Tasks
- How Celery fixed Python’s GIL problem